3632 independent reflections 2509 reflections with $I > 2\sigma(I)$

 $0.25\,\times\,0.20\,\times\,0.18$ mm

3 standard reflections every 100 reflections

intensity decay: none

H-atom parameters constrained

 $R_{\rm int} = 0.033$

262 parameters

 $\Delta \rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Bromo-2-{*a*-[1-(2-thienyl)benzimidazol-2-yl]benzyl}phenol

Fengke Yang, Fang Chen and Hailian Xiao*

New Materials & Function, Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: xiaohailian@163.com

Received 24 April 2007; accepted 15 May 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.112; data-to-parameter ratio = 14.7.

In the title compound, $C_{24}H_{17}BrN_2OS$, the benzimidazole ring system is planar. The dihedral angles formed by the bromophenol, phenyl and thienyl rings with the benzimidazole ring system are 78.4 (1), 80.2 (2) and 33.1 (1)°, respectively. The molecular structure and packing are stabilized by intra- and intermolecular $O-H\cdots N$ and $C-H\cdots N$ hydrogen-bonding interactions and $C-H\cdots \pi$ interactions.

Related literature

For related literature, see: Fekner *et al.* (2004); Liu *et al.* (2005); Rivas *et al.* (2002); Woolley (1944).

Experimental

Crystal data $C_{24}H_{17}BrN_2OS$ $M_r = 461.37$ Monoclinic, $P2_1/c$ a = 13.623 (3) Å b = 9.6472 (19) Å

c = 16.962 (3) Å β = 111.98 (3)° V = 2067.2 (8) Å³ Z = 4 Mo K α radiation $\mu = 2.11 \text{ mm}^{-1}$ T = 295 (2) K

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.609, \ T_{\max} = 0.684$
8223 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.112$ S = 1.023632 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C19-C24 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C13−H13A····N2	0.93	2.50	2.843 (4)	102
$O1-H1A\cdots N1^{i}$	0.82	1.94	2.753 (3)	169
$C3-H3A\cdots N1^{ii}$	0.93	2.58	3.449 (5)	155
$C12-H12A\cdots Cg1^{iii}$	0.93	3.15	3.916 (5)	141

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x, -y - 1, -z.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1990); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2141).

References

- Enraf-Nonius (1989). CAD-4 Software (Version 5.0). Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fekner, T., Gallucci, J. & Chan, M. K. (2004). J. Am. Chem. Soc. 126, 223–236.
 Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst 22 384–387
- Liu, Q. D., Jia, W. L. & Wang, S. N. (2005). Inorg. Chem. 44, 1332-1343.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rivas, F. M., Giessert, A. J. & Diver, S. T. (2002). J. Org. Chem. 67, 1708–1711. Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical
- X-ray Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.
- Woolley, D. W. (1944). J. Biol. Chem. 162, 225-232.

Acta Cryst. (2007). E63, o3041 [doi:10.1107/S1600536807023938]

4-Bromo-2-{*a*-[1-(2-thienyl)benzimidazol-2-yl]benzyl}phenol

F. Yang, F. Chen and H. Xiao

Comment

The benzimidazole nucleus has been of considerable interest since it was noted that it inhibits the growth of certain yeasts and bacteria (Woolley, 1944). Over the past few years, benzimidazoles have been used as antifungals, antibacterials, antihelminthics, 5-HT receptor antagonists, and thrombin receptor antagonists (Rivas *et al.*, 2002). However, that structural modifications can produce marked effects on physiological activity has been shown by the test data on the substituted benzimidazoles. In recent chemical literature, introduction of bulky substituents in *ortho* to the amide groups significantly increases the barrier to racemization (Fekner *et al.*, 2004). For this reason, the efficient synthesis of important diversely functionalized substituted benzimidazoles have attracted considerable attention. In particular, the discovery of 1,2-bisubstituted benzimidazole has increased this interest, which can be attributed not only to a good nucleophile but to their diverse biological and pharmacological properties as well (Liu *et al.*, 2005). We describe here the structure of the title compound, I, whose ring system contains two nitrogen atoms, a tertiary basic nitrogen and the other attached to an active 2-hydroxy-5bromophenyl)(phenyl)methyl group, bearing a chiral carbon atom.

In I, the benzimidazole ring is planar. The dihedral angles formed by the plane of the hydroxybromobenzene ring (p1) and thienyl ring (p2) with the phenyl ring are 73.6 (3) and 67.8 (2)°, respectively. The dihedral angles formed by the plane of benzimidazole with p1 and p2 are 78.4 (1) and 33.1 (1)°, respectively. The phenyl ring is almost perpendicular to the benzimidazole ring, as indicated by the dihedral angle of 80.2 (2)° between the two planes. The dihedral angle between p1 and p2 is 56.9 (2)°.

The molecular structure is stabilized by intra- and intermolecular O—H···N, C—H···N hydrogen-bonding interactions and by intermolecular C—H··· π interactions (Table 2; *Cg*1 is the centroid of the C19—C24 ring).

Experimental

5-Bromo-2-hydroxybenzophenone (HBBP) (27.7 g, 0.10 mol), 1,2-diaminobenzene (10.8 g, 0.10 mol), piperidine (10.2 g, 0.12 mol), and triethylorthoformate (12 ml) refluxed in absolute ethanol (120 ml) resulted in the red-orange product of HB-BP-PHEN. The title compound was obtained by the reaction of HBBP-PHEN (22.0 g, 0.06 mol) with 2-thiopheneformal-dehyde (7.3 g, 0.065 mol) and piperidine (8.5 g, 0.1 mol) in methanol (150 ml) under dry nitrogen at room temperature. The precipitated yellow solid was collected by filtration and washed twice with hot methanol. Single crystals suitable for X-ray measurements were obtained by slow evaporation of an absolute ethanol/acetic acid solution $(1:1 \nu/\nu)$ at room temperature.

Refinement

All H atoms were placed at calculated positions and allowed to ride on their attached atoms, with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(O)$.

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

4-bromo-2-{α-[1-(2-thienyl)benzimidazol-2-yl]benzyl}phenol

Crystal data	
C ₂₄ H ₁₇ BrN ₂ OS	$F_{000} = 936$
$M_r = 461.37$	$D_{\rm x} = 1.482 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 13.623 (3) Å	$\theta = 4 - 14^{\circ}$
<i>b</i> = 9.6472 (19) Å	$\mu = 2.11 \text{ mm}^{-1}$
c = 16.962 (3) Å	T = 295 (2) K
$\beta = 111.98 \ (3)^{\circ}$	Block, colourless
$V = 2067.2 (8) \text{ Å}^3$	$0.25\times0.20\times0.18~mm$
Z = 4	

Data collection

Enraf-Nonius CAD-4 diffractometer	$R_{\rm int} = 0.033$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.5^{\circ}$
T = 295(2) K	$h = -15 \rightarrow 16$
ω scans	$k = -11 \rightarrow 7$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -20 \rightarrow 18$
$T_{\min} = 0.609, \ T_{\max} = 0.684$	3 standard reflections
8223 measured reflections	every 100 reflections
3632 independent reflections	intensity decay: none
2509 reflections with $I > 2\sigma(I)$	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 1.0362P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
3842 reflections	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
262 parameters	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1 .	• ,				. 1.	1 .	,	182	ζ.
Fractional	atomic	coordinates	and i	sotron	IC OF P	auivalent	' isotron	1C d1S	nlacement	narameters	IA^{-}	1
1 / 00011011011	aronne	coordinates	control t	sonop		9000000000000	isonop	ie ans	pracement	parameters	1.1	/

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.06574 (4)	0.19632 (4)	0.05538 (3)	0.0884 (2)
S1	0.46731 (8)	-0.60807 (12)	0.37058 (7)	0.0777 (3)
01	0.41657 (15)	-0.1640 (2)	0.28505 (13)	0.0519 (6)
H1A	0.4732	-0.1225	0.3019	0.078*
N1	0.39000 (19)	-0.5378 (3)	0.17794 (16)	0.0462 (6)
N2	0.27450 (17)	-0.3751 (2)	0.18257 (14)	0.0360 (5)
C1	0.3387 (2)	-0.0780 (3)	0.23568 (18)	0.0425 (7)
C2	0.3573 (3)	0.0582 (4)	0.2186 (2)	0.0567 (9)
H2A	0.4252	0.0949	0.2432	0.068*
C3	0.2769 (3)	0.1391 (4)	0.1658 (2)	0.0606 (9)
НЗА	0.2903	0.2294	0.1534	0.073*
C4	0.1762 (3)	0.0858 (3)	0.1314 (2)	0.0510 (8)
C5	0.1543 (2)	-0.0470 (3)	0.14970 (18)	0.0434 (7)
H5A	0.0853	-0.0804	0.1274	0.052*
C6	0.2360 (2)	-0.1312 (3)	0.20179 (17)	0.0358 (6)
C7	0.2183 (2)	-0.2816 (3)	0.21980 (18)	0.0366 (7)
H7A	0.2518	-0.2933	0.2815	0.044*
C8	0.1029 (2)	-0.3217 (3)	0.19572 (18)	0.0389 (7)
C9	0.0459 (3)	-0.2612 (4)	0.2397 (2)	0.0532 (8)
H9A	0.0787	-0.1977	0.2827	0.064*
C10	-0.0591 (3)	-0.2948 (4)	0.2199 (3)	0.0675 (10)
H10A	-0.0965	-0.2538	0.2496	0.081*
C11	-0.1084 (3)	-0.3880 (4)	0.1568 (3)	0.0679 (11)
H11A	-0.1794	-0.4096	0.1434	0.081*
C12	-0.0535 (3)	-0.4490 (4)	0.1138 (2)	0.0635 (10)

H12A	-0.0872	-0.5129	0.0712	0.076*
C13	0.0529 (2)	-0.4170 (3)	0.13276 (19)	0.0499 (8)
H13A	0.0899	-0.4596	0.1031	0.060*
C14	0.3385 (2)	-0.4836 (3)	0.22301 (18)	0.0384 (7)
C15	0.3489 (2)	-0.5363 (3)	0.30641 (19)	0.0468 (8)
C16	0.2737 (3)	-0.5468 (3)	0.3435 (2)	0.0547 (8)
H16A	0.2042	-0.5158	0.3186	0.066*
C17	0.3172 (4)	-0.6111 (4)	0.4243 (2)	0.0753 (11)
H17A	0.2790	-0.6267	0.4589	0.090*
C18	0.4191 (4)	-0.6472 (5)	0.4460 (2)	0.0829 (13)
H18A	0.4589	-0.6895	0.4973	0.099*
C19	0.3577 (2)	-0.4605 (3)	0.10344 (19)	0.0419 (7)
C20	0.3864 (3)	-0.4754 (4)	0.0331 (2)	0.0557 (9)
H20A	0.4330	-0.5446	0.0311	0.067*
C21	0.3433 (3)	-0.3840 (4)	-0.0334 (2)	0.0613 (10)
H21A	0.3620	-0.3904	-0.0807	0.074*
C22	0.2729 (3)	-0.2831 (4)	-0.0307 (2)	0.0576 (9)
H22A	0.2453	-0.2229	-0.0765	0.069*
C23	0.2417 (2)	-0.2681 (3)	0.03740 (18)	0.0487 (8)
H23A	0.1934	-0.2005	0.0381	0.058*
C24	0.2862 (2)	-0.3589 (3)	0.10480 (17)	0.0370 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
Br1	0.0952 (4)	0.0492 (2)	0.0888 (3)	0.0169 (2)	-0.0023 (2)	0.0140 (2)
S1	0.0674 (6)	0.0854 (8)	0.0717 (7)	0.0199 (5)	0.0162 (5)	0.0253 (6)
01	0.0355 (11)	0.0475 (13)	0.0650 (14)	-0.0063 (10)	0.0098 (10)	0.0043 (11)
N1	0.0377 (13)	0.0423 (15)	0.0585 (16)	0.0047 (12)	0.0180 (12)	0.0007 (13)
N2	0.0336 (12)	0.0317 (13)	0.0416 (14)	0.0028 (10)	0.0126 (10)	-0.0009 (10)
C1	0.0426 (17)	0.0406 (17)	0.0450 (17)	-0.0007 (14)	0.0172 (14)	-0.0005 (14)
C2	0.0488 (19)	0.0442 (19)	0.075 (2)	-0.0122 (16)	0.0210 (17)	-0.0047 (17)
C3	0.069 (2)	0.0340 (17)	0.081 (2)	-0.0033 (17)	0.029 (2)	0.0054 (17)
C4	0.058 (2)	0.0359 (17)	0.0536 (19)	0.0106 (15)	0.0142 (16)	0.0016 (15)
C5	0.0436 (17)	0.0371 (16)	0.0465 (17)	0.0006 (14)	0.0134 (14)	-0.0035 (14)
C6	0.0383 (15)	0.0311 (15)	0.0395 (15)	0.0004 (12)	0.0162 (13)	-0.0027 (12)
C7	0.0360 (15)	0.0353 (16)	0.0380 (15)	0.0012 (12)	0.0134 (12)	-0.0021 (12)
C8	0.0361 (15)	0.0343 (15)	0.0457 (17)	0.0009 (13)	0.0148 (13)	0.0040 (13)
С9	0.0472 (19)	0.053 (2)	0.062 (2)	-0.0007 (16)	0.0243 (16)	-0.0044 (17)
C10	0.050 (2)	0.072 (3)	0.090 (3)	0.006 (2)	0.038 (2)	0.010 (2)
C11	0.0390 (19)	0.071 (3)	0.090 (3)	-0.0083 (19)	0.020 (2)	0.017 (2)
C12	0.053 (2)	0.060 (2)	0.069 (2)	-0.0222 (18)	0.0127 (18)	-0.0024 (19)
C13	0.0494 (19)	0.0466 (19)	0.0515 (19)	-0.0067 (15)	0.0164 (15)	-0.0014 (15)
C14	0.0324 (15)	0.0317 (15)	0.0483 (18)	-0.0008 (12)	0.0119 (13)	-0.0020 (13)
C15	0.0488 (18)	0.0363 (17)	0.0502 (18)	-0.0002 (14)	0.0128 (15)	0.0018 (14)
C16	0.060 (2)	0.049 (2)	0.058 (2)	0.0038 (17)	0.0249 (17)	0.0157 (17)
C17	0.091 (3)	0.071 (3)	0.072 (3)	-0.005 (2)	0.040 (2)	0.020 (2)
C18	0.098 (3)	0.074 (3)	0.064 (3)	0.009 (2)	0.015 (2)	0.028 (2)

C19	0.0349 (16)	0.0408 (17)	0.0501 (18)	-0.0050 (13)	0.0161 (14)	-0.0059 (14)
C20	0.0451 (19)	0.062 (2)	0.065 (2)	0.0026 (17)	0.0266 (17)	-0.0123 (19)
C21	0.060 (2)	0.080 (3)	0.052 (2)	-0.009(2)	0.0306 (18)	-0.013 (2)
C22	0.063 (2)	0.067 (2)	0.0412 (19)	0.0014 (19)	0.0179 (16)	0.0049 (17)
C23	0.0525 (19)	0.0496 (19)	0.0422 (18)	0.0052 (15)	0.0157 (15)	-0.0016 (15)
C24	0.0339 (15)	0.0379 (15)	0.0373 (16)	-0.0045 (13)	0.0111 (13)	-0.0048 (13)
Geometric paran	neters (Å, °)					
Br1—C4		1.900 (3)	С9—	-H9A	0.93	00
S1-C18		1.686 (4)	C10-	—C11	1.36	5 (5)
S1—C15		1.718 (3)	C10-	—H10A	0.93	00
O1—C1		1.360 (3)	C11-	C12	1.36	0 (5)
O1—H1A		0.8200	C11-	—H11A	0.93	00
N1-C14		1.323 (4)	C12-	C13	1.39	6 (4)
N1—C19		1.389 (4)	C12-	—H12A	0.93	00
N2-C14		1.371 (3)	C13-	—H13A	0.93	00
N2—C24		1.396 (3)	C14-	C15	1.45	9 (4)
N2—C7		1.470 (3)	C15-	C16	1.39	2 (4)
C1—C2		1.390 (4)	C16-	—C17	1.41	7 (5)
C1—C6		1.395 (4)	C16-	—H16A	0.93	00
C2—C3		1.370 (5)	C17-	C18	1.341 (5)	
C2—H2A		0.9300	C17-	С17—Н17А		00
C3—C4		1.374 (5)	C18-	—H18A	0.9300	
С3—НЗА		0.9300	C19-	C24	1.38	7 (4)
C4—C5		1.376 (4)	C19-	—C20	1.39	5 (4)
C5—C6		1.394 (4)	C20-	—C21	1.37	7 (5)
С5—Н5А		0.9300	C20-	—H20A	0.93	00
C6—C7		1.521 (4)	C21-	—C22	1.37	9 (5)
С7—С8		1.519 (4)	C21-	-H21A	0.9300	
С7—Н7А		0.9800	C22-	—C23	1.379 (4)	
C8—C13		1.380 (4)	C22-	—H22A	0.9300	
C8—C9		1.390 (4)	C23-	—C24	1.387 (4)	
C9—C10		1.379 (5)	C23-	—Н23А	0.93	00
C18—S1—C15		91.77 (19)	C10-		120.	1
C1—O1—H1A		109.5	C11-		120.	8 (3)
C14—N1—C19		104.9 (2)	C11-		119.	6
C14—N2—C24		106.4 (2)	C13-		119.	6
C14—N2—C7		126.1 (2)	C8—	-C13-C12	119.	6 (3)
C24—N2—C7		126.9 (2)	C8—	-C13—H13A	120.	2
O1—C1—C2		122.9 (3)	C12-	—С13—Н13А	120.	2
O1—C1—C6		117.4 (3)	N1—	C14N2	112.	8 (2)
C2—C1—C6		119.7 (3)	N1-	-C14C15	122.	8 (3)
C3—C2—C1		120.7 (3)	N2-	-C14C15	124.	3 (3)
C3—C2—H2A		119.6	C16-	C14	130.	0 (3)
C1—C2—H2A		119.6	C16-		111.	1 (2)
C2—C3—C4		119.4 (3)	C14-	C15S1	118.	8 (2)
С2—С3—НЗА		120.3	C15-		110.	9 (3)
С4—С3—Н3А		120.3	C15-		124.	5

C3—C4—C5	121.2 (3)	C17—C16—H16A	124.5
C3—C4—Br1	119.3 (3)	C18—C17—C16	113.2 (4)
C5—C4—Br1	119.5 (2)	C18—C17—H17A	123.4
C4—C5—C6	119.8 (3)	С16—С17—Н17А	123.4
С4—С5—Н5А	120.1	C17—C18—S1	113.0 (3)
С6—С5—Н5А	120.1	C17—C18—H18A	123.5
C5—C6—C1	119.1 (3)	S1—C18—H18A	123.5
C5—C6—C7	122.3 (2)	C24—C19—N1	110.5 (2)
C1—C6—C7	118.5 (2)	C24—C19—C20	120.6 (3)
N2—C7—C8	112.4 (2)	N1-C19-C20	128.9 (3)
N2—C7—C6	110.6 (2)	C21—C20—C19	117.7 (3)
C8—C7—C6	114.5 (2)	C21—C20—H20A	121.2
N2—C7—H7A	106.2	C19—C20—H20A	121.2
С8—С7—Н7А	106.2	C20—C21—C22	120.9 (3)
С6—С7—Н7А	106.2	C20—C21—H21A	119.6
C13—C8—C9	118.8 (3)	C22—C21—H21A	119.6
C13—C8—C7	122.6 (3)	C23—C22—C21	122.5 (3)
C9—C8—C7	118.6 (3)	C23—C22—H22A	118.7
C10—C9—C8	120.5 (3)	C21—C22—H22A	118.7
С10—С9—Н9А	119.8	C22—C23—C24	116.6 (3)
С8—С9—Н9А	119.8	С22—С23—Н23А	121.7
C11—C10—C9	120.5 (4)	C24—C23—H23A	121.7
C11-C10-H10A	119.8	C23—C24—C19	121.7 (3)
C9—C10—H10A	119.8	C23—C24—N2	132.9 (3)
C12-C11-C10	119.8 (3)	C19—C24—N2	105.4 (2)
C12—C11—H11A	120.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C13—H13A…N2	0.93	2.50	2.843 (4)	102
O1—H1A···N1 ⁱ	0.82	1.94	2.753 (3)	169
C3—H3A…N1 ⁱⁱ	0.93	2.58	3.449 (5)	155
C12—H12A…Cg1 ⁱⁱⁱ	0.93	3.15	3.916 (5)	141
Symmetry codes: (i) $-r+1$ $v+1/2$ $-r+1/2$: (ii) r $v+1$	7: (iii) $-r - v - 1 - 7$			

Symmetry codes: (1) -x+1, y+1/2, -z+1/2; (11) x, y+1, z; (11) -x, -y-1, -z.

